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Scott & Wickens

A Comparison of Verbal and Graphical Information Presentation

in a Complex Information Integration Decision Task

Christopher D. Wickens and Brad D. Scott

Abstract

Ths report describes an experiment conducted to evaluate the
relative merits of verbal as opposed to spatial-graphical displayformats
in presenting sequential information to subjects in a simulated C3
tactical decision making task. The task required subjects to integrate a
series of information messages bearing on the likelihood that one of two
hypotheses pertaining to tactical battlefield maneuvers was in effect.
Each information source could vary in its diagnosticity and its
reliability. These variables contribute independently to the total
valence or information value of the cue. Subjects integrated information
in problems of either 6, 8, or 10 cues, presented at a slow or fast speed,
in either a verbal (numerical) or spatial (graphical) format. After each
problem subjects made a choice of the most likely hypothesis accompanied
by an analog judgment of their confidience in that choice.

The results were examined from two perspectives: (1) From the
perspective of human engineering guidelines the data indicated that
subjects' decisions were more accurate using the spatial display. This
finding supports the principle of S-f compatibility stating that the
analog operations on which the judgments were based would be best served
by spatial displays. The spatial advantage was enhanced when the cues
were delivered at a slower speed, imposing greater demands on working
memory. (2) The data were analyzed from the perspective of different
models of probablistic information integration. In two respects subjects
tended to optimal behavior: they tended to apply an absolute, rather than
a relative Jud~gment of cue reliability, and they did not appear to be
influenced by either recency or primacy (anchoring). However, they did
appear to down weight differences in the reliability of infrormation
sources, relative to the optimal.
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Introduction

Tactical decisions are made by military commanders operating within
command, control, and communications (C3) systems. C3 is defined as a
closed-loop man-machine system designed to facilitate decision making
authority and direction by a properly designated personnel. Currently, C3

systems have a "real time" characteristic where commanders operate under
conditions of time stress and uncertainty. The amount of available
information will vary greatly and typically has a"short life cycle.
Samet, Weltman, and Davis (1976) assert that computer-based military
systems for C3 operations have increased the rate and density of
information flow to such an extent as to overwhelm the commander. They
assert that more information may in fact degrade, rather than enhance the
absolute level of decision making performance. Loo (1981) characterizes
the current state of affairs as "crisis management." The decision making
performance of the military commander is the essence of the C3 system.
Consideration of human performance limits in the iterative process of C3

system design is critical to system performance. Several approaches are
being taken to improve decision making performance within the C3 system.
Of these, probably the most successful involves the development of
decision aids.

Decision Aids

Decision aids can be implemented at ditferent levels within the C
3

system and have inherently different functions. For example, linear
models can be used to augment or replace the decision maker (Dawes, 1979).
Proper linear models can be used in a normative sense to integrate
information for the decision maker. Paramorphic models are created by
modeling the decision maker and are considered an improper linear model in
the sense that the derived weights are non-optimal. Bootstrapping
involves replacing the decision maker with a paramorphic model. It has
been demonstrated in clinical studies that all three models can
out-perform the decision maker using various criterion variables (Dawes &
Corrigan, 1974; Dawes, 1979; Goldberg, 1970). Dawes (1979) addresses
questions raised about the technical, psychological, and ethical problems
associated with the implementation of these linear models. Several issues
raised here remain particularly relevant to the application of linear
models in tactical C3 systems.

Samet, Weltman, and Davis (1976) take yet another approach and make a
solid case for an adaptive computerized system to control information flow
so as to best match overall system and human capabilities. They assert
that the multi-attribute information utility model is superior to the
decision maker at selecting the optimal amount and type of information in
inferential decision making tasks. They propose that this approach will
increase the efficiency and effectiveness of the decision maker.

.... "" :""-:"" -... .: :" ;" :: :. --": -=':T '" - -''-"T "-r J
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The approach of the present study is somewhat different from those
discussed above. We are concerned with the design of information displays
that will enhance decision making performance in probablistic information
integration tasks. The general task setting we consider is one in which
the operator must integrate a series of sequentially presented information
cues that vary in their diagnostic value with regard to a set of
hypotheses. The operator uses this information, optimally to revise in
working memory a continuous analog "scale" of confidence that the evidence
favors one or the other hypothesis. Such a task imposes limitations of at
least two general classes: On the one hand, several investigators have
documented a wide variety of cognitive limitations related to such
heuristics as anchoring, representativeness, and the non-optimal weighting
of sequential cues (e.g., Kahneman & Tversky, 1973; Einhorn & Hogarth,
1981; Slovic, Fischhoff, & Lichtenstein, 1977; Lopes, 1982). On the other
hand, some limitations may be perceptual in nature, describing bottlenecks
between the way the information is physically formatted and the optimal
analog model that is to be maintained in working menory. The following
pages will discuss in turn research related to information integration and
to stimulus processing.

Information Integration

An abundance of empirical evidence has demonstrated that human
judgment often does not reflect an optimal normative model. Tversky and
Kahneman (1973), Lyon and Slovic (1976) and others have shown that judges
neglect base rate information. Tversky and Kahneman have demonstrated
that cognitive heuristics such as "representativeness," "anchoring and
adjustment," and "availability" result in systematic biases in judgment.
Wickens (1983) has summarized a series of examples in which subjects tend
to ignore differences in the reliability of information sources, when
these are integrated in multi-element decision tasks. These phenomena
have sometimes been faulted for being highly problem-specific and of
insufficient magnitude to yield a priori empirical predictions (Bar
Hillel, 1980; Wallsten, 1977, 1980). Nonetheless, there have been a
sufficient number of studies demonstrating that systematic biases do exist
in human judgment, resulting in deviations from normative models to
suggest that these could represent an important sourct of difficulty in
the C3 environment.

Lopes (1982) has contrasted three models of information integration
used by subjects in different experimental settings. Each describes the
manner in which an internal subjective response, r, is attained and
updated from the value of two or more cues or sources of information.
These are the multiplying model, the averaging model, and the adding or
relative weighting model.
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Multiplying models, where rij = si sB i ,' have been widely studied.
If an integration process adheres to this m(del, then the effect of one S
variable is magnified by increasing levels of the other. In many of its
applications to decision theory, the two stimulus or cue values represent
a weight, usually associated with a probabilistic value, and a scale value
associated with the content of the information. Thus changes in the value
of an information source are assumed to have progressively more impact on
R, as the weight of that source is increased.

Averaging models assume that the information from two or more cues
will simply be averaged along some internal continuum, with each cue
"pulling" the average toward its particular value. This latter
characteristic is important. If a series of cues are being integrated
over time, the averaging model says that each new cue will always adjust
th,. running average toward the value of that cue, i.e., between the
current average and the new cue value. While an averaging model is often
appropriate in some circumstances (e.g., as the subject is talleying the
average value of a series of numbers), Lopes emphasizes that, when
integrating probablistic information the technique is clearly
inappropriate. Consider for example a Bayesian inference task in which
belief in one hypothesis is held to a relatively strong extent, and new
evidence which only weakly supports the same hypothesis is delivered. The
averaging model predicts that the new belief will be adjusted downward
toward the neutral point, reflecting a weighted average of the old belief
and the new evidence. Yet this is non-optimal. Any evidence, no matter
how weak, in favor of that hypothesis should cause a shift toward greater
belief. Lopes, however, reports that many people demonstrate this same
non-optimal bias, applying averaging when a Bayesian inference is
warranted.

The third class of models then, of which the Bayesian inference is a
specific case, are the relative ratio models. These are optimal for
Bayesian tasks in which there are F polar alternatives. Each sampled
cue will move the current average in the direction according to tile
hypothesis supported, with a magnitude given by the diagnostic value of
the stimulus. Only stimuli with no information value at all will fail to
move the current pointer. Unlike the averaging model, the current pointer
will only be moved toward a new piece of sampled evidence if the evidence
is more extreme than the value of the current pointer. In essence then,
new information is added to the integration of previous information,
rather than being averaged with that information.

* It is clear from a review of the literature on information
integration that the model of prediction is largely dependent upon the

* problem situation and experiment I design. Lopes (1982) asserts that the
difference in data that exhibit relative ratio procedure and data that

-.-. (.
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exhibit an averaging procedure can be explained in terms of the subjects'
representation of the response scele and the order in which stimulus
features are to be processed. In this respect, Lopes was able to make

subjects more normative Bayesian information integrators by changing their
adjlustment strategies.

Each model has associated with It a series of weights, attached to
each source of information that dictates how much each new item of
information will impact on the running estimate. Therefore another
characteristic that underlies models of information integration concerns
the weights that are applied to different sources of evidence. Three
characteristics of this weighting scheme are relevant to the present
research: (1) How weights are as.;igned according to the order of cue
arrival (the issue of primacy and recency or serial position), (2) How
weights are assigned according to th nature of the information, (3)
Whether absolute or relative weight! are employed.

(1) Serial position effects: Lopes (1982) has demonstrated the
manner in wEW the weighTs assigned to stimuli or information sources
arriving in sequence dictate various serial position effects. In
particular, heavy weightings assigned to the first arriving cues indicate
anchoring or primacy: A relunctance to adjust current estimates in light
or newly arrivinginformation. Heavy weights assigned to the final cues
suggest recenc in the integration process. The potential role of these
two biases wilT be examined in the present experiment.

(2) Differential weightings to different cues. Following the
multiplicative model of information IntegratioWTIhe reliability of a
piece of information should optimally be given the same weight as the
diagnosticity of that information in choosing between hypotheses (i.e.,
the extent to which the value of the cue is more likely under one
hypothesis than the other) (Johnson, Cavanagh, Spooner, & Samet, 1973).
These two should multiply to derive the total information "worth." Yet
there is evidence that when several sources of information differing in
both diagnosticity and reliability must be integrated, subjects tend to
discount differences in reliability of information sources, treating all
sources as if they were fully reliable, and focussing attention instead
more exclusively on diagnosticity (e.g., Kanarick, Huntington, & leterson,
1969; Kahneman & Tversky, 1973; Schum, 1975). We shall be investigating
this "as if" heuristic.

(3) Absolute versus relative weighting. The issue here concerns the
extent to wnichl p&6p-T-eilghtFe st rengthof evidence for or against a
particular hypothesis relative to the total amount of evidence presented.
Will the subject for example, who is confronted with a piece of evidence
favoring a hypothesis by 70/30 odds be more inclined to believe that
hypothesis true if this was the only evidence viewed, than if he had
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previously viewed 10 pieces of evidence whose net effect was neutral
(i.e., favored neither hypothesis). If the answer is affirmative, then
the subject is employing some form of relative weighting scheme. The
second case is seen by the subject to provide weaker evidence because the
70/30 odds were only obtained after 11 cues. In the first case, the same
odds were attained with only a ringle case. On the other hand, if the
subject views the two situations as providing equivalent evidence then he
is following an absolute weighting scheme. Applying optimal Bayesian
procedures, the posterior odds equal the prior odds multiplied by the
likelihood ratio, and the question of how many cues were required to
attain those prior odds is imnmaterial. This then is another issue we
shallI address.

The problem situation and experimental design of an investigation by
Fleming (1970) is particularly relevant to our study. In his experiment
subjects processed conflicting information in a tactical decision making
task. Decision making performance was compared to a Baysian inference
model -whereby probabilities from successive information sources should,
normatively, be multiplied to arrive at an overall probability for each of
three alternative hypotheses. Fleming concludes that rather than obeying
a normative model the majority of subjects used an adding model.
Furthermore, all suhjects that did not receive feedback were reported to
have used an adding model. It is not clear what method of analysis
Fleming used in concluding that his data exhibited an adding model of
information integration.

A descriptive adding-multiplying model has been utilized to represent
performance in the current study. The descriptive model of information
integration is illustrated in Figure 1. The specific stimulus dimensions,
reliability and diagnosticity, will be defined at a later point. Models A
and B both present the same information, however, Model B requires only
half the processing of Model A, i.e., only the differences between the
information values SiA supporting Hypothesis A and SjB supporting
Hypothesis B are given in Model B. Model B is more efficient and
represents the actual form of the adding-multiplying model used in the
current study, These models are similar to the adding model found in
Fleming's (1970) study in that information integration across cues is ati
adding process. The optimum values of individual cues were given in
Fleming's study while they are determined via a multiplicative process in
our model. It is important to note that the model is not complete it that
it does not describe a difference judgment. That is, at the end of t..4
trial the subject has a trial value for each competing hypothesis,
Hypothesis A and Hypothesis B, and must now differentiate between the two

-Iand decide which is the most likely hypothesis. This process will be
discussed below in the experimental predictions.

..s. - -
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Stimulus Structure

In the present experiment our subjects are required to integrate a
series of cues each of which differed in reliability and diagnosticity.
As noted above, these two values should optimally be multiplied to produce
a new quantity, the total intormation value, worth, or valence of the cue,
and it is these valences we ask subjects to derive and Integrate across
cues. In the "verbal" display condition, the reliability and
diagnosticity values are presented numerically. In the spatial display,
they are presented graphically as the height and base uf a rectangle,
respectively. The spatial display has two potential advantages over the
verbal.

(1) According to the principle of
stimulus/central-processlng/response (S-C-R) compatibility, outlined by
Wickens, Sandry, and Vidulich (1983), tasks that demand spatial/analog
processes in working memory will be best served by visual spatial displays
and more poorly served by verbal displays (either speech or print). Since
the present task requires that the subject update a continuous scale of
confidence in working memory with each added cue, the S-C-R compatibility
theory predicts better performance with the graphical display.

(2) An added benefit of the format of the graphical display is that
the height and width (diagnosticity and reliability) of each rectangle cue ,
are combined in such a way as to produce a new dimension--area--that is
directly equal to the cue valence measure subjects are supposed to
Integrate. A series of investigations indicate that these two dimensions
are "integral" and so are combined "automatically" and holistically by the
perceptual system to generate a direct perception of rectangular area
(Garner, 1974; Garner & Felfoldy, 1970; Lockhead, 1979). Hence, with the
spatial display, the subject does not need to engage in the conscious,
cognitively loading multiplication process to combine the two dimensions
and derive the valence measure.

There is however one potential drawback to the use of the holistic
analog display that may lead to systematic biases. Smith (1969) has
argued that the perception of rectangle size is influenced not only by
area, but by perimeter as well. This conclusion accounts for Anderson And
Weis's (1971) observation that the size of highly eccentric rectangles is
consistently overestimated.. Hence, elongated rectangles will be judged as
larger than squares of the same area, because the perimeter of the former
is greater. If this bias operates, then subjects will tend to
overestimate the valence of cues in which reliability and diagnosticity
are negatively correlated (producing elongation), relative to the
square-producing cases in which the two variables covary in a positive
'fashion.

m 'i
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Experimental Predictions

Experiment 1

A series of decision problems were desiqned it the context of a
tactical battlefield scenario. The subject was designated as a comander,
responsible for defending an area through which an attack from a
ficticious threat force was eminent. Threat force doctrine as well as
terrain features in the area of operations dictated that the attack would
come along a narrow front from either the north (H1) or south (H2) of
their sector. It was the subject's duty to analyze the available
intelligenc~e and decide which avenue of approach, north or south, the
threat force would take. Appendix A demonstrates this scenario. The
information for each hypothesis in each problem was presented sequentially
from several sources of information or cues. Each source conveyed
information for one of the two possible hypotheses. The worth of each
source was determined by two dimensions. Reliability (i.e., air
reconnaissance report, reliability = .80) and diagnosticity (i.e.,
destruction of obstacles to south, D = .70). Subjects were instructed to
evaluate the information presented and decide which hypothesis concerning
future threat force actions was most likeiy to occur. The effects of five
parameters on decision accuracy and confidence were studied within the
framework of descriptive Model B presented in Figure 1. Predictions of
these effects and how they bear on the model of information integration
are now discussed.

1. Figures 2 and 3 illustrate the verbal and spatial code formats of
the information display, respectively. It was predicted that the spatial
code format which utilizes dimensional integrality would enhance decision
accuracy. This prediction as noted above is based both upon the principle
of S-C compatibility, and the integral "configural" nature of the
rectangular object display.

While major emphasis of the present experiment was placed on the
distinction between verbal and analog display formats, we were also
interested in the influences of four additional decision problem
variables, both in their own right, and as they might modify the effect of
display format. These are described as follows.

2. The time available to process each cue in a decision problem was
varied. The main effect of this variable was cf less interest than were
the interaction effects of this variable with cue coding. We were
interested in how any advantages of the spatial display might be modulated
by varying information rate. On the one hand, increased rate produces an
increased degree of time-stress--presumably a detrimental effect. On the
other hand, this may be balanced by the fact that the faster rate imposes
less of a burden on working memory for the integration of successive cues.
Because of these two counteracting trends, we were unable to predict a
priori the ultimate effect of this variable.
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Model A

Information Value

Hyp A Hyp B

SIA SIB

r Reliability S2A S2B [ n n, riS i1
' r2 r3 " " rn S3A S3B =l1SiASiB I
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Model B

Cue Diagnosticity

Hyp A Hyp B

dI  0
[r 1  in, r, .. , n] d2  =2

0r d] 2n n 1

1d r2. r3' "' d3  0 r idI  . rid i

I "
g dn

Figure 1: Decision Models: Model A represents a general adding-
multiplying process; cue diagnosticity equals the absolute difference
of the information value of each alternative hypothesis for a given
cue; Model B represents a simplification in that only the cue diag-
nosticity is presented for the hypothesis having the greatest infor-
mation value S.
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CUE:
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Figure 2: Information :1 splay with verbal code format.
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ENEMY AZIR RECONNflISSlNCE TO NORTH
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Figure 3: Information display with spatial code format.



Scott & Wickens 12

3. The problem size or number of cues presented within a problem was
varied. Two different effects were predicted. First, decision accuracy
was expected to decrease with an increased problem size due to the effects
of increased memory load. Secondly, confidence was predicted to increase
with an Increased problem size. This direct relationship is clearly
supported in a vast number of studies but is particularly relevant to
within subject designs (Kaplan & Major, 1973).

4. Cue variability, defined as the direction of correlation between
cue diagnosticity and reliability, was varied in this experiment. Cues
having a negative correlation between diagnosticity and reliability
values, which we call high variability cues, were expected to be
overestimated in the spatial format condition. As described above, we
predict that the "perimeter effect" may produce a bias to overweight the
information value of highly eccentric rectangles. If these findings bear
on our study, then high variability cues will be overestimated in the
spatial format condition. Correspondingly, if one of the two competing
hypotheses is supported by high variability cues, the subjective value of
support for this hypothesis will be overestimated. Because the perimeter
effect is not relevant to the verbal code format condition, an
overestimation bias is not expected in this condition. Therefore, a code
x variability interaction is expected.

5. Finally, the total difference in information presented for the
competing hypotheses within a trial was varied between problems. As
stated above, the model of information Integration presented in Figure 1
is incomplete. It describes the procedure for summing information for
each hypothesis over successive cues, but does not describe how the final
judgment on the difference of information is to be made. The preference
and ratio models discussed above are relevant to this final judgment
process. The preference model, where preference - valuel - value2, can
clearly predict the most likely hypothesis, but intuitively does not
describe a confidence judgment. A ratio model would describe confidence
as a function of Vl/(Vl + V). Alternatively, the ratio model can
describe the confidence rating but not the initial decision process of
determining the most likely hypothesis. A combination of both models
where weighted difference = -i--- is evaluated. It
was predicted that confidence will be directly related to the weighted
difference factor. Optimality of information integration can he judged by
the extent to which judged confidence covaries with the actual weighted
(or absolute) difference. V1  V 2 or V1 -V2

Experiment 2 1 V+ 2  V+V

The objective of this experiment was to determine if there are biases
associated with processing the diagnosticity and reliability stimulus
dimensions. Hence, cues of high diagnosticity and low reliability were



Scott & Wickens 13

consistently presented for one hypothesis and cues of low diagnosticity
and high reliability presented for the competing hypothesis. If subjects
tend to treat reliability as a categorical, overweighted variable then the
hypothesis supported by evidence for which objective reliability is low
should be systematically favored.

Method: Experiment 1

Subjects

Eight undergraduate students at the University of Illinois, four male
and four female, volunteered to serve in this experiment. All subjects
had normal or corrected vision and were paid $3.00 per hour for their
participation in each of the three days of testing.

Apparatus

Subjects were seated in a light and sound attenuated booth containing
a 10 cm x 8 cm Hewlett-Packard model 1330a CRT and two spring-return push-
button keyboards. The keyboards at the right and left hands had two and
ten buttons, respectively. Subjects sat approximately 90 cm from the
display. A Digital Equipment Corporation PDP 11, 16 bit computer with 24K
memory was used to generate the experimental displays and record subject
performance.

Task

Figures 2 and 3 illustrate examples of the cues of military
intelligence, a series of which were presented to subjects sequentially.
Successive cues alternated in support of the two different possible
courses of action that the threat force might take: attack North or attack
South. Subjects were instructed to process the cues utilizing an
adding-multiplying model. That is, cue valence was to be equal to
diagnosticity x reliability and successive cue valences were to be summed
in support of their respective hypotheses. Then at the completion of the
trial subjects were prompted to as.!,ss the difference in support of the
two alternative hypotheses and indicate which was the most likely enemy
course of action using the two button keyboard. Subjects were then
presented a confidence scale ranging from 0-9 and anchored by "absolutely
uncertain" and "absolutely certain," respectively. Figure 4 illustrates
this confidence scale, Subjects were instructed to assess how confident
they were that the threat force would execute the course of action which
the subjects had judged most likely given the available information. The
ten button keyboard was used for this response.

./ ,

4- - .
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CONFI DENCE

ABSOLUTELY AB SOLUTELY
UNCERTAIN CERTAIN

V-- -- I I I 1 I I I I

0 1 2 3 4 5 6 7 8 9

Figure 4: Confidence response scale.
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Stimulus Design

Each cue consisted of a st,;tement about current threat force
disposition or relevant environmental conditions in the area of
operations. Additionally, the source of the information was presented.
Values of diagnosticity (the relevance of information) and reliability
(the credibility of the source) were also presented as part of the cue.
The following factors were manipulated orthogonally in the experimental
design.

Coding. Two cue formats were evaluated. A verbal code fomat is
presen-eiin Figure 2. The alternative spatial code design utilizing
dimensional integrality is presented in Figure 3. Cue valence is
represented by the darkened rectangle where height is the diagnostic value
and width is the reliability value. Positicn coding is utilized to
indicate which of the two alternative hypotheses is supported by the cue.
Information presented above the abscissa supports a threat attack to the
North and information presented below supports a threat attack to the
South.

Problem size. Three levels of problem size were used: A total of
six cues, three-Tn support of each hypothesis; eight cues total, four for
each hypothesis; and 10 cues total, five for each hypothesis.

Trial variability (VARIABILITY). This factor concerns the
relatTon-sTip between cue diagnosticity and reliability dimensions.
Problems containing only cues in which reliability and diagnosticity are
positively correlated are designated low variability cues. Hence, most of
the rectangles in the spatial format are "squarish." Cues with high
diagnosticity and low reliability or low diagnosticity and high
reliability are designated high variability cues. These cues have the
form of eccentric rectangles in the spatial format. The matrix presented
in Figure 5 depicts the respective diagnosticity and reliability values
associated with high and low variability cues.

Trial variability has two levels. In the low case, both alternative
hypotheses are supported with low variability cues. In the high trial
variability case one hypothesis is supported with low variability cues and
the second hypothesis is supported with high variability cues. Hence, if
a perimeter bias is present, subjects will "overpredict" the second
hypothesis. Note that cue variability is not a factor but a stimulus
condition. Trial variability Is the experimental factor having two levels
and is dependent upon the cue variability condition presented to the two
different alternative hypotheses during a trial.
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Figure 5: Cue variability design.
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Presentation time (TIME). Two levels of cue presentation time were
used. Cues were presented for three seconds (fast) or five seconds
(slow). Interstimulus interval remained constant at one second.

Weighted difference. The weighted difference was computed by
divi d the absolute difference of support presented for the two
different hypotheses by the total support presented for both hypotheses.
Hence, weighted difference

n n
E r d - d di=l IA i=lB iB

x 100%
n n
E d + E r d

i=1 i A  i A i=l i B iB

Sets of problems having three equally spaced levels of weighted difference

were used; 5-10%, 15-20%, and 25-30%.

Design

A within-subjects design was employed in which each subject
participated in all experimental manipulations over a period of two
sessions. Each session lasted approximately one hour and consisted of 36
trials. Figure 6 illustrates the total 72 trial conditions presented over
two sessions.

Trial order within a session was blocked by variability and weighted
difference (2 x 3). These six trials were presented randomly within a
block. Additionally, the six blocks of each session were randomly ordered
for each subject. The time factor was split by session such that all 36
trials of the first session were at the slow level and all 36 trials of
the second session were at the fast level.

Procedure

Subjects were run individually. One practice session preceded the
two experimental sessions and lasted 90 minutes. During the practice
session subjects were presented the tactical scenario described earlier
and In detail in Appendix A. Subjects were also given definitions of cue
reliability and diagnosticity and examples of each as illustrated in
Appendix B. Any military terminology used in the experiment was
t ;oroughly explained. Finally, subjects were instructed on the use of the

~adding model for tntegrattong successive cues within a trial. A visual

aid illustrated in Appendix C was used for instructing this process.
During the remainder of the practice session, approximately 30 minutes,

i~
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practice trials were run. All subjects achieved a minimum of five
successive correct triats during this period.

Subjects were given eight practice trials at the start of each of the
two experimental sessions. A five second int rval between trials and a 60
second rest between blocks of trials were imposed during the experimental
sessions.

At the conclusion of the experiment subjects were asked to explain
how they integrated successive cues in a trial and how their confidence
rating was related to the information integration process.

Results: Experiment 1

Analysis of Experimental Effects

Accuracy. Table 1 presents a summary of decision accuracy as a
functTon of each of the five independent variables averaged over
replications. Arc sine transformations were performed on accuracy
percentages. An analysis of variance performed on these data revealed
significant main effects on decision accuracy for three of the five
variables studied. No interaction effects were found to be statistically
significant, and hence only main effects are shown in the table. A large
effect was found for coding (t(1,7) = 3.85, p < .025).1 As predicted, the
spatial code format yielded an improvement in decision accuracy over the
verbal format. The effect of trial variability on decision accuracy wasi:1
also statlstically significant (t(1,7) = 2.17, ?< .05). Decision
accurdcy was best in the low variability conditTon, and poorer when one
hypothesis was supported by the more eccentric rectangles. Finally, the
main effect of time was statistically significant (t(1,7) = 4.27, P <
.005). Decision accuracy was qreater in the fast presentation con itlon
(3 seconds) than in the slow pr.sen.ation condition (5 seconds). [

In interpreting the time effect, it should be recalled that the main
effect of time was not of interest in this study. The interaction effects
of time were of primary concern. For this reason the two levels of time
were split between sessions. All slow conditions were run in the first
session and all fast conditions were run in the second session.
Consequently, the time 3ffect is possibly the result of a practice
artifact. It is also possible however ht the time manipulation resulted
in memory effect rather tilatt 3 time stress effect. That is, at tie slower
5 sec cue presentation time, the losi of information aboit each cue due to
memory accounts for a large portion of the process limitations. It is
therefore plausible th: t a lesser degree of memory decay can account for
the increase in decision accuracy at the fast cue presentation time.

IT-tests rather than F-tests were used to examine the three two-level main
effects.
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Table 1

Percent Accuracy

Trial Variability Low HIigh
97.2% 92.3%

Coding Spatial Verbal
97.6% 92.0%

Time Slow Fast
93.4% 96.2y.

Weighted Difference 5-10% 15-20% 25-30%
94.2% 95.3% 94.8%

Set Size 6(total) 8(total) l0(total)
95.3% 95.3% 93.8%



Scott & Wickens 21

Confidence. Raw confidence data were transformed using the following
algorithm: If th decision response is correct then absolute confidence -
10 + confidence r~.ing; if the decision response is incorrect then
absolute confidence - 10 - confidence rating. This algorithm adjusts the
range of confidence from 1 to 19. This transformation is made to penalize
subjects more heavily if they made an error (chose the incorrect
hypothesis) when they were extremely confident of being correct. Since
roughly 95% of the responses were correct, most of the transformed values
are greater than 10. Table 2 presents the data summary for the
transformed confidence scores.

A six-way repeated measures ANOVA (code x weighted difference x time
x problem size x variability x replication) was performed on the
transformed confidence data. The main effects of code and problem tize
were not significant (F(1,7) - 2.47, p < .16) and (F(2,14) - 0.78, p =
.48), respectively. Significant effects were found for evidence, tAme and
trial variability, and for the code x time and the problem size x time
interactions.

A very large effect of weighted difference was found (F(2,14) =
25.10, p < .0001). This effect is particularly important for two
reasons. First, it demonstrates that subjects are extracting more
information when more information is available. In addition, it
demonstrates that subjects are using the confidence response scale as an
analog for evidenze.

Figure 7 portrays the two main interactions on the confidence
variable that were observed. The figure shows confidence with the verbal
display on the left panel and the spatial on the right. The abscissa
within each panel represents the effects of problem size, and the two
functions are those for the slow(dashed line) and fast(solid line) speed,
respectively. Each data point is collasped across the three levels of
weighted difference.

Across both panels we find that the faster speed generated reliably
higher confidence (F1,7 - 5.88, p < .05). While as noted in discussing
the analogous effect on accuracy, this might reflect the influence of
practice, it might also be related to the effect of memory decay. The
faster rate produces a smaller loss of information during integration and
therefore warrants higher confidence in the final resoonse. This
interpretation is supported to some degree by the reliable interaction
between speed and problem size (F(2,14) = 5.97, p < .01). Examining
Figure 7 suggests that the major source of this interaction is between the
8 and 10 cue problems. Increasing problem size from 8-10 increases
confidence at the fast rate but diminishes it at the slow rate. This
suggests that two factors may be operating with changes in response speed.
When the rate is slow, a good deal of forgetting of earlier cues takes
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Table 2

Absolute Confidence

Trial Variability Low High
14.95 13.37

Coding Verbal Spatial
13.92 14.41

Time Slow(5 sec) Fast(3 sec)
13.93 14.40

Weighted Difference Low(5-10%) Med(15-20%) High(25-30%)
12.76 14.14 15.60

Set Size 6(total) 8(total) l0(total)
14.0 14.26 14.23

L
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place and so, with more cues present more is forgotten and confidence is
t.-ereby reduced. This is substantiated by the marked loss in accuracy of
this particular condition, there being twice as many errors here as in any
of the other conditions. When the rate is fast there is less opportunity
for decay. Here more cues lead to increased confidence because of the
subjective belief that the evidence is more reliable.

An additional interaction effect of time x code was found to be
statistically significant (F(1,7) - 6.34, p < .04) and is illustrated in
Figure 7 as well. The verbal disDlay shows a greater increase in
confidence with faster speed than does the spatial which appears to be
little affected by confidence at all, particularly with the small sized
problems. There are two likely interpretations, tie first of which
corresponds to the practice artifact interpretation of the main effect of
time. The information integration task is process limited and aided by
the integral spatial display. The benefits of the spatial format over the
verbal format decrease with practice (the faster speed) as the process
limitations are decreased. Phrased in terms of our initial prediction,
this interpretation suggests that the S-C-R incompatibility betweer, the
verbal cue format and spatial central processing code is somewhat overcnme
with practice. Alternatively, all or part of the process limitations may
be memory related and the effects of the integral spatial display are
largest when the greatest demands are placed on memory, which Is likely to
occur at the slow presentation rate.

A large main effect of trial variability was obtained (F(I,7 )=
22.47, p< .005). Confidence ratings were higher in low variability F
trials than in nigh variability trials. This finding was predicted in the
spatial code condition to result from an overestimation of high
variability cues if perimeter estimates biased the computation of cue
valence. In the present study, 24 of the 36 high variability trials were
designed such that an overestimation of high variability cues would result
in a confidence decrement. That is, the incorrect hypothesis was
supported by high variability cues. The code x trial variability
interaction was not statistically significant (F(1,7) = .01, p = .94).
This indicates that if high variability cues are overestimated there is
not a differential effect between the spatial code and verbal code format.
Therefore, the overestimation bias appears to be operating in both the
spatial and verbal code conditions, and so could nct result from a
"perimeter effect." Hence, it appears that high trial variability simply
makes the Information integration more difficult, with a resulting loss in
both accuracy and confidence.

Regression analysis. The large effect of weighted difference on
confidence discussed above demonstrates that subjects are treating the
confidence scale as an analog of an evidence or information factor. We
assume that the good decision maker is one who gains confidence as a
greater difference in evidence between the competing hypotheses exists.

------------------------------------------
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Additionally, the decision maker is "absolutely uncertain" when equal
evidence is presented for both competing hypotheses. The following
analysis investigates the relationship between evidence and confidence
ratings, and the effects of our other independent variables on this
relati onship.

In order to capture a measure of how confidence varied with evidence,
regression analyses of confidence on the three levels of weighted
difference were performed for each subject in each of the 24 trial
condition cells (code(2) x time(2) x problem size(3) x trial
variability(2)). A five-way repeated measures ANOVA (code x time x
problem size x trial variability x replication) was performed on the
slope, intercept, and residual mean square statistics.

The main effect of coding was our primary interest in the ANOVA
performed on slope. We have suggested that the spatial code format is
more S-C compatible with an analog confidence scale. A difference in
sensitivity or slope would therefore be of interest. This effect,
however, was not statistically significant (F(1,7) = .25, P = .63), nor
were any other main effects found to be significant.

The intercept statistic was interpreted as a measure of
overconfidence. That is, we interpret a positive confidence estimate when
the support for both hypotheses is extrapolated to be equal as a measure
of overconfidence. Optimal decision makers are "absolutely uncertain" in
this situation. This ANOVA showed a significant main effect of trial
variability (F(1,7) = 8.44, p < .02). The mean intercept of the low
variability trials (2.10) was greater than that of the high variability
trials (0.78), a difference of 1.32. A main effect of trial variability
on confidence was described earlier and again, Table 2 illustrates that
the mean confidence rating of low trial variability was 1.58 units greater
than the mean confidence rating of the high trial variability condition.
We can now interpret this difference as related to a bias in assigning
confidence between the two conditions--a bias that is somewhat unrelated
to the actual differences in evidence.

The final ANOVA was performed on the residual mean square statistic.
We interpret the residual mean square as a measure of "goodness of fit" of
the regression line. Any conditions having significantly large residual
mean square values would be an indication that performance was non-optimal
or possibly that the weighted difference model was inappropriate as a
descriptive model of confidence rating in this condition. The ANOVA,
however, showed no significant effects.
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It is important to note that the absence of reliable effects in the
regression analyses may result in part from the lack of power associated
with the three ANOVA's. Each individual regression plot of each cell,
from which the statistics were derived, had only three data points. It is
quite likely then that a single aberrant data point could drastically
influence the regression slope producing a high degree of variability in
the raw data. An alternative approach, in which data are averaged across
subjects before computing the regression equation will be described below.

Order effects. If changing the order of stimulus presentation in a
sequentTa-T integration task results in an altered response, then in
general, order effects are present. There are many possible causes of
order effects. Primacy effects are found when earlier stimuli in a serial
integration task are given relatively more weight than later stimuli.
This is a manifestation of the phenomenon of anchoring in which an initial
hypothesis is accepted, based upon the first arriving evidence, and is
then held more tenaciously than warranted when evidence arrives to
disconfirm it (Kahneman & Tversky, 1973; Lopes, 1982). Correspondingly,
recency effects are found when later stimuli are given more weight than
ear er stimuli. The most common explanation of the recency effect is
that the earlier stimuli are given less weight due to a memory loss. The
recency effect seems particularly relevant to this study. This is because
the role of memory loss was identified as a possible cause of of the
significant interaction between time and problem size. This was
attributed to the influence of memory loss in the 10 cue, T(slow)
condition.

In the present study the cues systematically alternated in favor of
one then the other hypothesis. The order of alternation was balanced so
that on half of the trials ("correct first") the evidence concerning the
correct hypothesis was presented as the first cue and that concerning the
incorrect as the last cue. On the other half ("correct last"), evidence
for the incorrect hypothesis was presented first and for the correct was
on the last cue. Hence, if primacy were a dominant factor, then accuracy
(and confidence) on correct-first trials should be greater than on
correct-last trials. On the other iiand, if information integration was
dominated by recency, then correct-last trials should be favored. A
two-way repeated measures ANOVA was performed on the confidence measures,
and this effect was not found to be statistically significant (F(1,7) =

1.24, p = .30). The absence of an effect here does not necessarily mean
that primacy and recency were not shown. It does imply that if such
effects were present they probably balanced each other in their magnitude.
The problems were not ordered in such a way as to choose between these
particular hypotheses.

4!
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Model of Infomation Integration

Processing strategies (self-report). Subjects were asked to explain
their Informtion nte- tin strategy Tor the entire decision task. More

specifically, three processes were of interest: the assessment of the
valence of each individual cue, the integration of successive cues, and
the final assessment of confidence.

All subjects reported using a multiplying model, i.e., diagnosticity
x reliability, to assess cue valence. The strategies for integration of
successive cues reported by the subject were less unanimous. Three
subjects reported using an adding model in which running totals were kept
throughout a trial for each alternative hypothesis. Four subjects
reported using a "random walk" model. Successive cues were added (or
subtracted) to a single running balance. This model intuitively places
less demands on working memory. Additionally, one subject reported using
a somewhat primitive heuristic in which the "random walk" model was
utilized, but was further simplified by using fingers and fractions of
fingers to represent the running balance. Finally, subjects were asked to
explain their strategy for assessing confidence. Five subjects stated
that they used a weighted difference strategy. Three subjects claimed to
use only the absolute difference of information presented for the two
alternative hypotheses.

Re ression analysis. The results of the self-report exercise have
led us to take a closer look at the model subjects used for information
integration. Three subjects reported using a preference model where net
differences = value I - value 2 , in favor of the weighted difference model.
These two models are qualitatively very different. Recall that in this
experiment successive cues alternate in support of the two alternative
hypotheses. An equal number of cues are presented for each hypothesis.
The weighted difference model does not have directional constraints. If
one hypothesis is strongly supported and two additional cues of equal
weight are presented for each alternative hypothesis, so that the net
evidence of these two cues is zero, then a confidence decrement is
predicted. This makes the weighted difference model qualitatively similar
to an averaging model. Alternatively, the net difference model has
directional constraints akin to the Bayesian model. This model does not
predict a decrease in response when additional neutral or mild evidence is
presented.

Since we did not "track" the confidence judgment of our subjects as
they progressed through the sequence of cues (only a single rating was
given after all cues were presented), we were unable to distinguish
between the models on the basis of the impact of weak or neutral evidence.
Instead, we employed a means of model testing that capitalized on the fact
that we had three different problem sizes, defining three different levels
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of total evidence. As described in the methods section, the three levels
of evidence of our cues were designed to create equally spaced equal
intervals of weighted difference (evidence for the favored
hypotheses/total evidence). If subjects then used this variable to
calibrate their subjective confidence, then confidence should vary
linearly with net difference. On the other hand, the three objective
evidence levels were not equally spaced in terms of the net difference
(equal values of relaive differences will produce different values of net
difference if the total amount of evidence varies). Hence, if subjects
used the more optimal net difference strategy, the regression of
subjective confidence onto relative confidence should show a non-linear
component.

Regressions of confidence on net difference, and confidence on
percent difference were performed for each subject in 24 different trial
conditions (code(2) x time(2) x problem size(3) x trial variability(2)).
In order to determine if subjects were using one mode of information
integration over another, the objective evidence for the favored
hypothesis on each trial was computeTn two different fashions. First,
as the net evidence in favor of one over the other; second, as the ratio
of this net difference to the total amount of evidence presented for both
hypotheses on the trial. A two-way (decision model x replication)
repeated measures ANOVA was performed on the correlation statistics of the
two different regressions. Correlations were interpreted as a degree of
relationship measure between confidence ratings and the respective model
of integration. No significant effect of correlation for the two
different models was found (F(1,7) = .77, p = .41).

One final analysis was conducted to evaluate the difference between
these two models. Figure 8 illustrates the regression of the mean
confidence rating on net difference, and below that the regression of
confidence on percent or relative difference. The rmean percent difference
was computed in each of the three levels of weighted difference and
plotted against the respective mean confidence ratings over subjects. A
similar procedure was used to plot confidence on net difference. Note
that the ordinate (confidence) values are equivalent between the two
graphs (despite the expanded scale on the bottom), but the abscissa values
are equally spaced on the weighted difference scale (as we had created
them), while they are not on the net difference scale.

As Figure 8 indicates, both models seem to do an excellent job of
predicting confidence with averaged group data. There is however, an
apparently better relationship depicted in the plot of confidence on net
difference. This is of course, only a cursory analysis. Recall, however,
that weighted differernce and net difference are highly related. This
small difference may therefore yield substantial evidence in favor of the
more optimal net difference model.
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The data were further broken down and plotted in the same fashion
separately for the two groups that differed in the strategies that they had
reported using. These self-reports proved to be fairly accurate
indicators of the integration strategy revealed in the data. The three
subjects who reported that they used the net difference strategy showed an
almost perfect linear relation between net difference and subjective
confidence. The fit was much poorer with the weighted difference. The
behavior of the five self-reported weighted difference subjects on the
other hand seemed to reflect a compromise between the two strategies.

Method: Experiment 2

The design of Experiment 2 was similar to that of Experiment 1 with
three exceptions. First, the problem size remained constant at eight
total cues, four for each alternative hypothesis. Second, the display
time was held constant at the slow (5 seconds) presentation rate.
Finally, a new level of trial variability was implemented. All trials in
this experiment utilized high variability cues for both alternative
hypotheses. More specifically, cues of high diagnosticity and low
reliability were presented for one hypothesis and cues of low
diagnosticity and high reliability were presented for the alternative
hypothesis. Formally, in terms of any model of information integration
neither hypothesis should be favored by this bias since the valence of
each cue should be insensitive to the relative contributions of
reliability and diagnosticity (Johnson, Cavanagh, Spooner, & Samet, 1973).
However, if subjects tended to treat one variable different from another
(i.e., to discount differences in reliability applying the "as if"
heuristic; Wickens, 1983), then biases should become evident. The trials
of Experiment 2 were configured so that the incorrect hypothesis was
always favored by the cues of low reliability. Hence, to the extent that
subjects overestimated reliability these inflated cue valences should bias
them toward picking the incorrect hypothesis--i.e., their error rate
should increase.

Results: Experiment 2

Accuracy. Table 3 presents accuracy data averaged over subjects and
over display format. The accurrcy measure for each subject was determined
by the proportion of errors ,nade with the two opportunities (one with each
display type) in a given coidition. Hence, raw accuracy values for a
given subject were either 0, .5, or 1. Arc sine transformations were
performed on accuracy percentages. A two-way (weighted difference x
replication) repeated measures ANOVA was conducted. As in Experiment 1,
the main effect of weighted difference was statistically significant
(F(1,7) = 5.86, p < .01). It is evident that decision accuracy was
poorest in the trials of low weighted difference. As described above, the
evidence in all trials favored the hypothesis having low diagnosticity and
high reliability. Therefore, the fact that In 44% of all low difference
trials the subject chose the incorrect hypothesis, supported by high
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diagnosticity and low reliability, indicates that reliability tends to be
overweighted to a greater extent than diagnosticity. The 44% error rate
in this condition is significant in that it compares with an error rate of
less than 6% in the corresponding condition of Experiment 1, when
conditions were not created to induce a bias. While the present bias
might be expected to be present at all three levels of weighted
difference, its presence here only in the low weighted difference
condition is not too surprising because a constant bias would have a
relatively smaller effect on the greater weighted difference.

Confidence. Because we have demonstrated that the confidence scale
is used as an analog of evidence we expect the dimensional bias for
reliability to decrease confidence at all three levels of weighted
difference. That is, since the cues in support of the incorrect
hypothesis (high diagnosticity and low reliability) are overestimated,
this would yield a decrease in confidence as predicted by the weighted
difference mod'l.

, dgments of confidence were transformed as in Experiment 1. Table 3
presents these data averaged across subjects. A three-way (code x
weighted difference x replication) ANOVA was conducted. The main effect
of code and the code x weighted difference interaction were not
significant, supporting the interpretations made for the absence of these
effects in the accuracy ANOVA. The main effect on weighted difference was
very large (F(7,14) = 18.84, p < .0001). This demonstrates that, as in
Experiment , subjects are becoming increasingly confident as a greater
difference in evidence between the competing hypotheses exists. Most
significantly for the hypothesis under consideration, the mean confidence
rating , .his experiment was 12.69 on the experimental confidence scale.
The ove' confidence for the corresponding eight cue conditions in
Experimev. I was 14.16. The decrease in confidence in Experiment 2
supports prediction of d dimensional overestimation bias, i.e., cues
of high diagnosticity and low reliability are overestimated, pulling the
integration of information away from the correct hypothesis and towards
the neutral Iint, and hence producing a final judgment of reduced
confidence.

Discussion

Engineering Applications

Code effects. The results of Experiment 1 indicate that decision
accura-cy s enhianced with the integrated spatial display format. Two
interpretations of this finding have been discussed. We initially
predicted that the integral dimensions of the spatial code format display
would simplify the integration process and, therefore, e,,hance decision
accuracy, especially under conditions of time stress. This latter
interpretation is now uncertain. The code x time interaction effect
demonstrates that the spatial code format has a greater benefit when
information is presented at a relatively slower rate. Alternatively, the
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Table 3

Percent Accuracy

Weighted Difference

5-10% 15-20% 25-30%

0.563 0.938 1.000

Absolute Confidence

Weighted Difference

5-10% 15-20% 25-30%

Verbal 11.00 12.25 14.38
Code

Spatial 10.38 13.50 14.62

:
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spatial code format was predicted to be more compatible with the analog
nature of the internal scale of confidence maintained in working memory.
Because of the greater degree of compatibility, the internal scale is more
easily revised and is less sensitive to the decay of positioning with the
increasing interval between successive cues. The spatial display was
predicted to enhance the encoding process and have positive effects on
working memory. The code x time interaction effects support this
interpretation.

Speed effects. It was our intention to evaluate the effect of the
spatialicdFe ormat under conditions of time st'ess. Our results
indicate, however, that the time manipulations in this study produced more
of an effect on memory loss effect than of time stress. Both the code x
time and problem size x time interaction have been interpreted in terms of
memory loss, although these could also result from practice effects
because the slow speed was presented first.

Non-optimality in Decision Making

In addition to their human engineering implications, the results of
the present experiment bear as well on certain cognitive phenomena in
information integration and decision making. Three of these phenomena
will be described.

1. Models of information integration. The consistent effects of
weighted difference on confidence in both experiments demonstrate the
ability of the subjects to extract more evidence and therefore increase
their confidence as more diagnostic evidence is presented. Five subjects
did in fact report using a weighted difference model for confidence
judgment. On the other hand, three subjects claimed to consider the net
difference of information presented for the two competing hypotheses. It
is unclear as to which of these two models, weighted difference or net
difference, is the best predictor of subjective confidence. An ANOVA
performed on the correlations of both models and confidence was
inconclusive. A comparison of the regression plots of confidence on both
of these models does, however, suggest that the net difference is the
better overall predictor of confidence for group data. The plot for the
three subjects who claimed to use the net difference was perfectly linear
with this variable. The plot for the remaining five subjects could be
equally well accounted for by either of the two models. Since the net
difference model is more appropriate in the Bayesian type inference task
used here than is the weighted model (reflecting an averaging process), we

, conclude that subjects in the present paradigm showed tendencies toward
this form of optimal behavior. As noted of course, we were unable to
assess the different models directly in terms of the impact of different
cues presented in sequence. Future research will address this issue.
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2. Individual cue values. Examining the integration of the individal
dimensions of relta@-Tii -an' diagnosticity in a finer grain revealed two
further effects. Experiment 1 demonstrated that a negative correlation
between these variables (producing for the spatial display an increase in
shape variability) reduced both the accuracy and confidence of prediction.
The fact that this reduction was a main effect that did not differ between
the verbal and spatial formats suggests that the source of difficulty was
not the physical variability in the shape of the rectangles, but rather
was related to problems encountered in integrating negatively correlated
data.

Individual cue values were also examined in Experiment 2 whose data
suggested that subjects tended to over-value low levels of reliability,
thereby reducing both their accuracy and confidence, relative to the
values observed in Experiment 1. These results are important in that they
indicate that subjects truly did respond to the meaning of the two cues
and did not simply treat them as arbitrary numbers. Had arbitrary numbers
been combined there would be little reason for subjects to treat one
differently from the other. In the spatial condition it is of course
possible that the asymmetry was related to the physical dimensions. The
same data would have been produced had subjects overestimated the base of
the rectangles (depicting reliability) relative to the height. Yet two
factors indicate that this did not occur. On the one hand, this bias
would be contrary to the bias typically observed in the
horizontal-vertical illusion in which vertical segments are overestimated
in length relative to horizontal ones. On the other hand, since the main
effect of code was not significant in Experiment 2, this would suggest an
equal loss of judgment for both verbal and spatial displays, indicating
that the source was related to cognitive information integration and not
to perceptual display biases. Thus it appears that the subjects were
processing the reliability measure as if its value were closer to that of
the larger diagnosticity value. Thegeneral finding that differences in
reliability are ignored or "unitized" in multiple source information
integration tasks hds been reported in a number of other investigations
(see Wickens, 1983 for a summary). The demonstration of the "as if"
heuristic here is consistent with those findings.

3. Serial effects. The problem size or number of cues within a trial
did not hav an effect on confidence. This is contrary to many findings
of similar studies with serial integration. The absence of a problem size
effect is indicative of optimal performance. If subjects have evaluated
information to produce a tentative confidence rating, and then are
presented additional information, they should not change their confidence
rating unless the weighted difference of information changes.

4.'
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Mother indicator of optimal performance was the absence of order
effects. Recall that, in accordance with our experimental design, one
half of the trials presented the first cue of the trial in favor of the
most likely hypothesis, while the last cue was in favor of the least
likely hypothesis. Conversely, on the other half of the trial conditions,
the last cue of the trial was presented in favor of the most likely
hypothesis, while the first cue was not. Thus, a greater mean confidence
in the former or latter trial conditions would indicate a primacy or
recency effect, respectively. We did not find a significant effect
although this must be interpreted with caution. It is certainly possible
that neither effect is present, and hence theANOVA did not show a
significant effect. On the other hand, both primacy and recency may have
been operating and simply cancelled each other out. In future work, an
experimental design which does not employ a strictly alternating sequence
of cue presentation will be used to clarify this somewhat ambiguous
i nterpretati on.

Implications and Future Research

Spatial code format displays should be considered for further study
and application in tactical C3 systems as well as other areas of decision
making in which responses and the internal representations underlying
those responses are analog in form. This display format seems
particularly beneficial when decision performance is limited by memory
loss. Additional research will be necessary to gain a better
understanding of the effects of time stress on the utility of the spatial
code format. Decreasing both the problem size and time of cue
presentation would possibly limit the effects of m-mory loss and better
define the effects of time stress on integration task performance.

The consistent effects of weighted difference on confidence ratings
demonstrates the efficacy of this model for describing decision
performance in the present paradigm. A simple net difference model
however does just as well, if not better, than the weighted difference
model in describing the amount of subjective evidence extracted by a
subject in a decision trial. Further research .ill be necessary to
clarify the relevance of these two descriptive models. It is hoped that
an experimental design which varies trial evidence in accordance with both
models, but in an orthogonal manner, would isolate the effects of both
models.
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Finally, additional insight on how the "as if" heuristic operates on
different sources of information is required. We have good reason to

believe that the operation of this heuristic on cues with high
diagnosticity and low reliability results in an overestimation bias of the
cue valence or worth. This "riskiness" in interpreting unreliable data is
possibly the result of a cognitive simplification. The operator reduces
the load imposed on working memory by ignoring reliability or placing its
value at unity. An experimental design in which these cues, high in
diagnosticity and low in reliabilty, are pitted against rues of equal
total evidence, but of moderate diagnosticity and reliability, might
demonstrate the exact nature of this bias. Further knowledge of this
effect could have a great impact on C3 system performance if considered in
both training and display design.

\
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Appendix A

Visual Model of Information Integration
A Simulated Tactical Decision Making Task

Imagine that you are the cormnander of an Army unit. You have just
been advised that the threat force is preparing an assault against
your sector (area) of responsibility. Your sector is very large and
you cannot possibly cover (defend) the entire area. You can,
however, successively block the threat assault if you know where in
your area he will attack and you subsequently concentrate your forces
there, i.e., will the enemy attack from the North or from the South?

FRIENDLY THREAT

Northerly Assault
YOUR AREA

OF

RESPONSIBILITY

Southerly Assault

You will be presented several pieces of evidence or cues. Your task
will be to weigh the cues presented and decide which alternative is
most likely, i.e., will the threat assault in the North or South of
the sector?

II
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Apendix B

How Much Weight to Assign Each Cue

A cue is a piece of evidence which supports one of the possible
alternatives. The weight or valence of a cue is a function of the
cue diagnosticity and the cue reliability.

Cue diagnosticity is determined by the relevance of the information
on the decison at hand. Example: Consider a jury weighting pieces
of evidence (cues) in a murder trial.

Cue 1: A character witness has testified that the defendant has
-'bd temper." This information is at best circumstantial and
not very relevant. This cue would have a very low diagnostic
weight, possibly 10 on a scale of 0-100.

Cue 2 : The subject was seen fleeing the scene of the murder.
M-Ts-cue is very relevant and would surely implicate the
defendant in the murder. This cue would have a very high
diaginostic weight, possibly 90 on a scale of 0-100.

Cue reliability is determined by the credibility of the source of
iformation. A source can be a person, thing, or activity from which
the information was originally obtained. Example: Consider two
different cases of Cue 2 above.

Case 1: This defendant was seen fleeing the scene of the
murder. The witness was a policeman responding to the call for
help. The policeman would have great credibility and the
reliability of this cue would be very high, possibly 90 on a
scale of 0-100.

Case 2: The subject was seen fleeing the scene of the murder.
We- wTtness is a known felon who is also suspect in the murder.
This witness would have very little credibility. The
reliability of this cue would be low, possibly 10 on a scale of
0-100.

Therefore, cue weight = diagnosticity x reliability. What weight
would you as-esst-Fe-vTd-eo Feplhn Hinkley's assault on
President Reagan if used as evidence in a trial?

L1W 1
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